Unity and C#



Event Methods

> Start()

» Runs once when the component is initialized

» Update|)

» Runs once every frame update
» OnGUI|()

» Draws the GUI layer each frame update
» OnCollisionEnter(Collision c)

» |s called when the object enters a collision



Public Attributes

» Can be accessed by all scripts referencing that behavior

» Can be modified on the Unity screen as part of a GameObject’s
component properties, making them more useful than usual for
coding because:

» It allows you to modify one object’s values without affecting any other
instance of that script

» You do not need to open the editor to quickly test values during
development

» Can also help build for mod development in the future



Behavior Script tricks

» gameobject will always reference what the script is attached to

» Is treated as a part of the object. Things such as ‘tfransform’ will
reference the fransform of the game object it is attached to

» Camera.main will always reference the main camera in the scene

» Debug.Log(“string”) will print out messages in the console field.
Great for tracking down bugs and confirming that events are being
fired off



Some Maqjor Classes

NV V VvV Vv

Time

GUI
Transform
Physics
Vector3
Input

Camera

deals with how time passes

handles GUI elements placed on the screen
handles how an object occupies simulation space
handles the in-engine physics such as collision hits
3D vector data and manipulation

handles input from things such as the keyboard,
mouse and game pad

handles the cameras in the scene



(GameObject).GetComponent<Sc
rnpt>()

» Will return the reference to the given GameObject’s desired
behavior script

» If the chosen component is not attached to the GameObject this
will return null instead

» You will likely use this method very often



Transformations

» Accessed via the ‘transtform’ field of a GameObject

» All GameObjects have a transform component, including empty
GameObjects

» Most common usage is to manipulate scale, position and rotation

» Position can be changed through either the ‘position’ attribute
(Vector3) or by using using the Translate method

» Rotation can be changd through the 'rotation’ attribute (Quaternion) or
by using the Rotate method.

» Scale is usually changed through the ‘localScale’ attribute (Vector3)



Rotating Around a Point

» A useful method from:
http://answers.unity3dd.com/quesiions/532297 /rotate-a-vector-
around-a-certain-point.nim|

Vector3d Rotate AroundPivot(Vector3 point, Vector3 pivot, Vector3
angles)

Vector3 dir = point - pivof; // get point direction relative to pivot
dir = Quaternion.Euler(angles) * dir; // rotate it
point = dir + pivof; // calculate rotated point

return point;


http://answers.unity3d.com/questions/532297/rotate-a-vector-around-a-certain-point.html

Creating Primitives

» All Unity primitives can be generated via a method found in the
GameObject Class

» Example:
» GameObject g = GameObject.CreatePrimitive (PrimitiveType.Cylinder);



Loading Textures

» Step 1. Place the image you want to use in the ‘Resources’ folder in
assets

» Step 2:load the texture
» Texture2D textureName = (Texture2D)Resources.Load(“imgName");
» Step 3: Use texture

» Examples:
» GUI elements can use them as an argument for some methods

» Assign as the texture of a Material instance



Casting a Ray

GameObject focused = null;

Vector3 mouse = Input.mousePosition;

mouse.z = 0;

RaycastHit hit;

Ray r = Camera.main.ScreenPointfToRay(mouse);
if (Physics.Raycast(r, out hit))

{

focused = hit.transform.gameQbject;

}

else

{

focused = null;



Determining the Time Between
Jpdate calls

» Time.deltaTlime

» Useful for timers and keeping movement smooth
» Timer:
» timerValue += Time.deltaTlime;
» Place that in the update method
» Smooth Movement:
» Transform.position += new Vector3(0,5,0)*Time.deltaTime;

» Makes your movement calculations based on fime in seconds rather
than the frame rate (prevents dips and jerkiness if your frames slow
down)



Deforming a 3D Mesh

>

>

To adjust a mesh you first need a reference to the MeshFilter
Component of the GameQObject and access the ‘mesh’ attribute

In this case we will focus on the ‘vertices’ and ‘triangles’ attributes of
the mesh:

» Vertices: Array of Vector3 instances

» Triangles: Array of infeger pointers. Each triangle consists of 3 integers
arranged in order. Each of these integers represents a corner of a
triangle and the value of this integer denotes the index of the
corresponding vertex in the vertices array.

Changing the position of a Vector3d element in the vertices array will
result in the vertex moving and the triangles adjusting to
accommodate the change.

However, you need to make a separate reference of the array an
then push that reference back into the vertices attribute after you
change things to make this work



Overlap Spaces

» Part of the Physics class
» In tferms of coding they are similar fo that of a raycast.

» These spaces serve as effectively single-use Colliders and as such
their dimensions are similar to that of their corresponding collider

shape (box, sphere, capsule, etc.)



Oculus VR and Unity

» Standard GUI will not work, must treat it as a 3D object in the scene

by moving the GUI canvas info the scene proper or using 3D objects
as custom Ul elements

» Additionally, the camera will not move via translation/position
adjustments. To move an Oculus-controlled camera you must make

the camera a child of another GameObject and move this parent
object instead



