
Unity and C#



Event Methods

 Start()

 Runs once when the component is initialized

 Update()

 Runs once every frame update

 OnGUI()

 Draws the GUI layer each frame update

 OnCollisionEnter(Collision c)

 Is called when the object enters a collision



Public Attributes

 Can be accessed by all scripts referencing that behavior 

 Can be modified on the Unity screen as part of a GameObject’s

component properties, making them more useful than usual for 
coding because:

 It allows you to modify one object’s values without affecting any other 

instance of that script

 You do not need to open the editor to quickly test values during 

development

 Can also help build for mod development in the future



Behavior Script tricks

 gameobject will always reference what the script is attached to

 Is treated as a part of the object. Things such as ‘transform’ will 

reference the transform of the game object it is attached to

 Camera.main will always reference the main camera in the scene

 Debug.Log(“string”) will print out messages in the console field. 

Great for tracking down bugs and confirming that events are being 

fired off 



Some Major Classes

 Time deals with how time passes

 GUI handles GUI elements placed on the screen

 Transform handles how an object occupies simulation space

 Physics handles the in-engine physics such as collision hits

 Vector3 3D vector data and manipulation

 Input handles input from things such as the keyboard, 

mouse and game pad

 Camera handles the cameras in the scene



(GameObject).GetComponent<Sc

ript>()

 Will return the reference to the given GameObject’s desired 

behavior script 

 If the chosen component is not attached to the GameObject this 
will return null instead

 You will likely use this method very often 



Transformations

 Accessed via the ‘transform’ field of a GameObject

 All GameObjects have a transform component, including empty 

GameObjects

 Most common usage is to manipulate scale, position and rotation

 Position can be changed through either the ‘position’ attribute 

(Vector3) or by using using the Translate method

 Rotation can be changd through the ’rotation’ attribute (Quaternion) or 

by using the Rotate method.

 Scale is usually changed through the ‘localScale’ attribute (Vector3)



Rotating Around a Point

 A useful method from: 
http://answers.unity3d.com/questions/532297/rotate-a-vector-
around-a-certain-point.html

Vector3 RotateAroundPivot(Vector3 point, Vector3 pivot, Vector3 
angles)

{

Vector3 dir = point - pivot; // get point direction relative to pivot

dir = Quaternion.Euler(angles) * dir; // rotate it

point = dir + pivot; // calculate rotated point

return point; 

}

http://answers.unity3d.com/questions/532297/rotate-a-vector-around-a-certain-point.html


Creating Primitives

 All Unity primitives can be generated via a method found in the 

GameObject Class

 Example:

 GameObject g = GameObject.CreatePrimitive(PrimitiveType.Cylinder);



Loading Textures

 Step 1: Place the image you want to use in the ‘Resources’ folder in 

assets

 Step 2: load the texture

 Texture2D textureName = (Texture2D)Resources.Load(“imgName");

 Step 3: Use texture

 Examples:

 GUI elements can use them as an argument for some methods

 Assign as the texture of a Material instance



Casting a Ray

GameObject focused = null;

Vector3 mouse = Input.mousePosition;

mouse.z = 0;

RaycastHit hit;

Ray r = Camera.main.ScreenPointToRay(mouse);

if (Physics.Raycast(r, out hit))

{

focused = hit.transform.gameObject;

}

else

{

focused = null;

}



Determining the Time Between 

Update calls

 Time.deltaTime

 Useful for timers and keeping movement smooth 

 Timer:

 timerValue += Time.deltaTime;

 Place that in the update method

 Smooth Movement:

 Transform.position += new Vector3(0,5,0)*Time.deltaTime;

 Makes your movement calculations based on time in seconds rather 

than the frame rate (prevents dips and jerkiness if your frames slow 

down)



Deforming a 3D Mesh

 To adjust a mesh you first need a reference to the MeshFilter
Component of the GameObject and access the ‘mesh’ attribute

 In this case we will focus on the ‘vertices’ and ‘triangles’ attributes of 
the mesh:

 Vertices: Array of Vector3 instances

 Triangles: Array of integer pointers. Each triangle consists of 3 integers 
arranged in order. Each of these integers represents a corner of a 
triangle and the value of this integer denotes the index of the 
corresponding vertex in the vertices array. 

 Changing the position of a Vector3 element in the vertices array will 
result in the vertex moving and the triangles adjusting to 
accommodate the change.

 However, you need to make a separate reference of the array an 
then push that reference back into the vertices attribute after you 
change things to make this work



Overlap Spaces

 Part of the Physics class

 In terms of coding they are similar to that of a raycast.

 These spaces serve as effectively single-use Colliders and as such 

their dimensions are similar to that of their corresponding collider 

shape (box, sphere, capsule, etc.)



Oculus VR and Unity

 Standard GUI will not work, must treat it as a 3D object in the scene 

by moving the GUI canvas into the scene proper or using 3D objects 

as custom UI elements

 Additionally, the camera will not move via translation/position 

adjustments. To move an Oculus-controlled camera you must make 

the camera a child of another GameObject and move this parent 

object instead 


