Unity and C#



Event Methods

> Start()

» Runs once when the component is initialized

» Update|)

» Runs once every frame update
» OnGUI|()

» Draws the GUI layer each frame update
» OnCollisionEnter(Collision c)

» |s called when the object enters a collision



Public Attributes

» Can be accessed by all scripts referencing that behavior

» Can be modified on the Unity screen as part of a GameObject’s
component properties, making them more useful than usual for
coding because:

» It allows you to modify one object’s values without affecting any other
instance of that script

» You do not need to open the editor to quickly test values during
development

» Can also help build for mod development in the future



Behavior Script tricks

» gameobject will always reference what the script is attached to

» Is treated as a part of the object. Things such as ‘tfransform’ will
reference the fransform of the game object it is attached to

» Camera.main will always reference the main camera in the scene

» Debug.Log(“string”) will print out messages in the console field.
Great for tracking down bugs and confirming that events are being
fired off



Some Maqjor Classes
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Time

GUI
Transform
Physics
Vector3
Input

Camera

deals with how time passes

handles GUI elements placed on the screen
handles how an object occupies simulation space
handles the in-engine physics such as collision hits
3D vector data and manipulation

handles input from things such as the keyboard,
mouse and game pad

handles the cameras in the scene



(GameObject).GetComponent<Sc
rnpt>()

» Will return the reference to the given GameObject’s desired
behavior script

» If the chosen component is not attached to the GameObject this
will return null instead

» You will likely use this method very often



Transformations

» Accessed via the ‘transtform’ field of a GameObject

» All GameObjects have a transform component, including empty
GameObjects

» Most common usage is to manipulate scale, position and rotation

» Position can be changed through either the ‘position’ attribute
(Vector3) or by using using the Translate method

» Rotation can be changd through the 'rotation’ attribute (Quaternion) or
by using the Rotate method.

» Scale is usually changed through the ‘localScale’ attribute (Vector3)



Rotating Around a Point

» A useful method from:
http://answers.unity3dd.com/quesiions/532297 /rotate-a-vector-
around-a-certain-point.nim|

Vector3d Rotate AroundPivot(Vector3 point, Vector3 pivot, Vector3
angles)

Vector3 dir = point - pivof; // get point direction relative to pivot
dir = Quaternion.Euler(angles) * dir; // rotate it
point = dir + pivof; // calculate rotated point

return point;


http://answers.unity3d.com/questions/532297/rotate-a-vector-around-a-certain-point.html

Creating Primitives

» All Unity primitives can be generated via a method found in the
GameObject Class

» Example:
» GameObject g = GameObject.CreatePrimitive (PrimitiveType.Cylinder);



Loading Textures

» Step 1. Place the image you want to use in the ‘Resources’ folder in
assets

» Step 2:load the texture
» Texture2D textureName = (Texture2D)Resources.Load(“imgName");
» Step 3: Use texture

» Examples:
» GUI elements can use them as an argument for some methods

» Assign as the texture of a Material instance



Casting a Ray

GameObject focused = null;

Vector3 mouse = Input.mousePosition;

mouse.z = 0;

RaycastHit hit;

Ray r = Camera.main.ScreenPointfToRay(mouse);
if (Physics.Raycast(r, out hit))

{

focused = hit.transform.gameQbject;

}

else

{

focused = null;



Determining the Time Between
Jpdate calls

» Time.deltaTlime

» Useful for timers and keeping movement smooth
» Timer:
» timerValue += Time.deltaTlime;
» Place that in the update method
» Smooth Movement:
» Transform.position += new Vector3(0,5,0)*Time.deltaTime;

» Makes your movement calculations based on fime in seconds rather
than the frame rate (prevents dips and jerkiness if your frames slow
down)



Deforming a 3D Mesh

>

>

To adjust a mesh you first need a reference to the MeshFilter
Component of the GameQObject and access the ‘mesh’ attribute

In this case we will focus on the ‘vertices’ and ‘triangles’ attributes of
the mesh:

» Vertices: Array of Vector3 instances

» Triangles: Array of infeger pointers. Each triangle consists of 3 integers
arranged in order. Each of these integers represents a corner of a
triangle and the value of this integer denotes the index of the
corresponding vertex in the vertices array.

Changing the position of a Vector3d element in the vertices array will
result in the vertex moving and the triangles adjusting to
accommodate the change.

However, you need to make a separate reference of the array an
then push that reference back into the vertices attribute after you
change things to make this work



Overlap Spaces

» Part of the Physics class
» In tferms of coding they are similar fo that of a raycast.

» These spaces serve as effectively single-use Colliders and as such
their dimensions are similar to that of their corresponding collider

shape (box, sphere, capsule, etc.)



Oculus VR and Unity

» Standard GUI will not work, must treat it as a 3D object in the scene

by moving the GUI canvas info the scene proper or using 3D objects
as custom Ul elements

» Additionally, the camera will not move via translation/position
adjustments. To move an Oculus-controlled camera you must make

the camera a child of another GameObject and move this parent
object instead



